Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution
Jinyang Liang,
Peng Wang,
Liren Zhu and
Lihong V. Wang ()
Additional contact information
Jinyang Liang: California Institute of Technology
Peng Wang: California Institute of Technology
Liren Zhu: California Institute of Technology
Lihong V. Wang: California Institute of Technology
Nature Communications, 2020, vol. 11, issue 1, 1-10
Abstract:
Abstract Simultaneous and efficient ultrafast recording of multiple photon tags contributes to high-dimensional optical imaging and characterization in numerous fields. Existing high-dimensional optical imaging techniques that record space and polarization cannot detect the photon’s time of arrival owing to the limited speeds of the state-of-the-art electronic sensors. Here, we overcome this long-standing limitation by implementing stereo-polarimetric compressed ultrafast photography (SP-CUP) to record light-speed high-dimensional events in a single exposure. Synergizing compressed sensing and streak imaging with stereoscopy and polarimetry, SP-CUP enables video-recording of five photon tags (x, y, z: space; t: time of arrival; and ψ: angle of linear polarization) at 100 billion frames per second with a picosecond temporal resolution. We applied SP-CUP to the spatiotemporal characterization of linear polarization dynamics in early-stage plasma emission from laser-induced breakdown. This system also allowed three-dimensional ultrafast imaging of the linear polarization properties of a single ultrashort laser pulse propagating in a scattering medium.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-19065-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19065-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-19065-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().