An all-photonic focal-plane wavefront sensor
Barnaby R. M. Norris (),
Jin Wei,
Christopher H. Betters,
Alison Wong and
Sergio G. Leon-Saval
Additional contact information
Barnaby R. M. Norris: University of Sydney
Jin Wei: University of Sydney
Christopher H. Betters: University of Sydney
Alison Wong: University of Sydney
Sergio G. Leon-Saval: University of Sydney
Nature Communications, 2020, vol. 11, issue 1, 1-9
Abstract:
Abstract Adaptive optics (AO) is critical in astronomy, optical communications and remote sensing to deal with the rapid blurring caused by the Earth’s turbulent atmosphere. But current AO systems are limited by their wavefront sensors, which need to be in an optical plane non-common to the science image and are insensitive to certain wavefront-error modes. Here we present a wavefront sensor based on a photonic lantern fibre-mode-converter and deep learning, which can be placed at the same focal plane as the science image, and is optimal for single-mode fibre injection. By measuring the intensities of an array of single-mode outputs, both phase and amplitude information on the incident wavefront can be reconstructed. We demonstrate the concept with simulations and an experimental realisation wherein Zernike wavefront errors are recovered from focal-plane measurements to a precision of 5.1 × 10−3 π radians root-mean-squared-error.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-19117-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19117-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-19117-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().