Sequential generation of linear cluster states from a single photon emitter
D. Istrati (),
Y. Pilnyak,
J. C. Loredo,
C. Antón,
N. Somaschi,
P. Hilaire,
H. Ollivier,
M. Esmann,
L. Cohen,
L. Vidro,
C. Millet,
A. Lemaître,
I. Sagnes,
A. Harouri,
L. Lanco,
P. Senellart and
H. S. Eisenberg
Additional contact information
D. Istrati: Hebrew University of Jerusalem
Y. Pilnyak: Hebrew University of Jerusalem
J. C. Loredo: Université Paris-Saclay
C. Antón: Université Paris-Saclay
N. Somaschi: Quandela
P. Hilaire: Université Paris-Saclay
H. Ollivier: Université Paris-Saclay
M. Esmann: Université Paris-Saclay
L. Cohen: Hebrew University of Jerusalem
L. Vidro: Hebrew University of Jerusalem
C. Millet: Université Paris-Saclay
A. Lemaître: Université Paris-Saclay
I. Sagnes: Université Paris-Saclay
A. Harouri: Université Paris-Saclay
L. Lanco: Université Paris-Saclay
P. Senellart: Université Paris-Saclay
H. S. Eisenberg: Hebrew University of Jerusalem
Nature Communications, 2020, vol. 11, issue 1, 1-8
Abstract:
Abstract Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-19341-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19341-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-19341-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().