EconPapers    
Economics at your fingertips  
 

The persistence potential of transferable plasmids

Teng Wang and Lingchong You ()
Additional contact information
Teng Wang: Duke University
Lingchong You: Duke University

Nature Communications, 2020, vol. 11, issue 1, 1-10

Abstract: Abstract Conjugative plasmids can mediate the spread and maintenance of diverse traits and functions in microbial communities. This role depends on the plasmid’s ability to persist in a population. However, for a community consisting of multiple populations transferring multiple plasmids, the conditions underlying plasmid persistence are poorly understood. Here, we describe a plasmid-centric framework that makes it computationally feasible to analyze gene flow in complex communities. Using this framework, we derive the ‘persistence potential’: a general, heuristic metric that predicts the persistence and abundance of any plasmids. We validate the metric with engineered microbial consortia transferring mobilizable plasmids and with quantitative data available in the literature. We believe that our framework and the resulting metric will facilitate a quantitative understanding of natural microbial communities and the engineering of microbial consortia.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-19368-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19368-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-19368-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19368-7