EconPapers    
Economics at your fingertips  
 

Aftershocks are fluid-driven and decay rates controlled by permeability dynamics

Stephen A. Miller ()
Additional contact information
Stephen A. Miller: Center for Hydrogeology and Geothermics (CHYN), University of Neuchâtel

Nature Communications, 2020, vol. 11, issue 1, 1-11

Abstract: Abstract One aspect of earthquake physics not adequately addressed is why some earthquakes generate thousands of aftershocks while other earthquakes generate few, if any, aftershocks. It also remains unknown why aftershock rates decay as ~1/time. Here, I show that these two are linked, with a dearth of aftershocks reflecting the absence of high-pressure fluid sources at depth, while rich and long-lasting aftershock sequences reflect tapping high-pressure fluid reservoirs that drive aftershock sequences. Using a physical model that captures the dominant aspects of permeability dynamics in the crust, I show that the model generates superior fits to observations than widely used empirical fits such as the Omori-Utsu Law, and find a functional relationship between aftershock decay rates and the tectonic ability to heal the co- and post-seismically generated fracture networks. These results have far-reaching implications, and can help interpret other observations such as seismic velocity recovery, attenuation, and migration.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-19590-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19590-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-19590-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19590-3