EconPapers    
Economics at your fingertips  
 

An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas

Juliane Neupert, Sean D. Gallaher, Yinghong Lu, Daniela Strenkert, Na’ama Segal, Rouhollah Barahimipour, Sorel T. Fitz-Gibbon, Michael Schroda, Sabeeha S. Merchant and Ralph Bock ()
Additional contact information
Juliane Neupert: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Sean D. Gallaher: and Institute for Genomics and Proteomics
Yinghong Lu: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Daniela Strenkert: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Na’ama Segal: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Rouhollah Barahimipour: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Sorel T. Fitz-Gibbon: Cell and Developmental Biology
Michael Schroda: Max-Planck-Institut für Molekulare Pflanzenphysiologie
Sabeeha S. Merchant: and Institute for Genomics and Proteomics
Ralph Bock: Max-Planck-Institut für Molekulare Pflanzenphysiologie

Nature Communications, 2020, vol. 11, issue 1, 1-17

Abstract: Abstract Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically acts on transgenic DNA. Once a permissive chromatin structure has assembled, transgene expression can persist even in the absence of mutations disrupting the silencing pathway. We have identified the gene conferring the silencing and show it to encode a sirtuin-type histone deacetylase. Loss of gene function does not appreciably affect endogenous gene expression. Our data suggest that transgenic DNA is recognized and then quickly inactivated by the assembly of a repressive chromatin structure composed of deacetylated histones. We propose that this mechanism may have evolved to provide protection from potentially harmful types of environmental DNA.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-19983-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19983-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-19983-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19983-4