Demonstration of non-Markovian process characterisation and control on a quantum processor
G. A. L. White,
C. D. Hill,
F. A. Pollock,
L. C. L. Hollenberg () and
K. Modi ()
Additional contact information
G. A. L. White: University of Melbourne
C. D. Hill: University of Melbourne
F. A. Pollock: Monash University
L. C. L. Hollenberg: University of Melbourne
K. Modi: Monash University
Nature Communications, 2020, vol. 11, issue 1, 1-10
Abstract:
Abstract In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated — or non-Markovian — noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10−3. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-20113-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20113-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-20113-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().