Emergency deployment of direct air capture as a response to the climate crisis
Ryan Hanna (),
Ahmed Abdulla,
Yangyang Xu and
David G. Victor
Additional contact information
Ryan Hanna: University of California San Diego
Ahmed Abdulla: University of California San Diego
Yangyang Xu: Texas A&M University
David G. Victor: University of California San Diego
Nature Communications, 2021, vol. 12, issue 1, 1-13
Abstract:
Abstract Though highly motivated to slow the climate crisis, governments may struggle to impose costly polices on entrenched interest groups, resulting in a greater need for negative emissions. Here, we model wartime-like crash deployment of direct air capture (DAC) as a policy response to the climate crisis, calculating funding, net CO2 removal, and climate impacts. An emergency DAC program, with investment of 1.2–1.9% of global GDP annually, removes 2.2–2.3 GtCO2 yr–1 in 2050, 13–20 GtCO2 yr–1 in 2075, and 570–840 GtCO2 cumulatively over 2025–2100. Compared to a future in which policy efforts to control emissions follow current trends (SSP2-4.5), DAC substantially hastens the onset of net-zero CO2 emissions (to 2085–2095) and peak warming (to 2090–2095); yet warming still reaches 2.4–2.5 °C in 2100. Such massive CO2 removals hinge on near-term investment to boost the future capacity for upscaling. DAC is most cost-effective when using electricity sources already available today: hydropower and natural gas with renewables; fully renewable systems are more expensive because their low load factors do not allow efficient amortization of capital-intensive DAC plants.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-20437-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20437-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-20437-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().