EconPapers    
Economics at your fingertips  
 

Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass spectrometry

Sophie Tomaz, Dongyu Wang, Nicolás Zabalegui, Dandan Li, Houssni Lamkaddam, Franziska Bachmeier, Alexander Vogel, María Eugenia Monge, Sébastien Perrier, Urs Baltensperger, Christian George, Matti Rissanen, Mikael Ehn, Imad El Haddad and Matthieu Riva ()
Additional contact information
Sophie Tomaz: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON
Dongyu Wang: Paul Scherrer Institute
Nicolás Zabalegui: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Dandan Li: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON
Houssni Lamkaddam: Paul Scherrer Institute
Franziska Bachmeier: Goethe-University Frankfurt
Alexander Vogel: Goethe-University Frankfurt
María Eugenia Monge: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Sébastien Perrier: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON
Urs Baltensperger: Paul Scherrer Institute
Christian George: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON
Matti Rissanen: University of Helsinki
Mikael Ehn: University of Helsinki
Imad El Haddad: Paul Scherrer Institute
Matthieu Riva: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON

Nature Communications, 2021, vol. 12, issue 1, 1-9

Abstract: Abstract Organic peroxy radicals (RO2) play a pivotal role in the degradation of hydrocarbons. The autoxidation of atmospheric RO2 radicals produces highly oxygenated organic molecules (HOMs), including low-volatility ROOR dimers formed by bimolecular RO2 + RO2 reactions. HOMs can initiate and greatly contribute to the formation and growth of atmospheric particles. As a result, HOMs have far-reaching health and climate implications. Nevertheless, the structures and formation mechanism of RO2 radicals and HOMs remain elusive. Here, we present the in-situ characterization of RO2 and dimer structure in the gas-phase, using online tandem mass spectrometry analyses. In this study, we constrain the structures and formation pathway of several HOM-RO2 radicals and dimers produced from monoterpene ozonolysis, a prominent atmospheric oxidation process. In addition to providing insights into atmospheric HOM chemistry, this study debuts online tandem MS analyses as a unique approach for the chemical characterization of reactive compounds, e.g., organic radicals.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-20532-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20532-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-20532-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20532-2