Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather
Danielle Touma (),
Samantha Stevenson,
Flavio Lehner and
Sloan Coats
Additional contact information
Danielle Touma: University of California, Santa Barbara
Samantha Stevenson: University of California, Santa Barbara
Flavio Lehner: ETH Zürich
Sloan Coats: University of Hawai’i at Mānoa
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract Attribution studies have identified a robust anthropogenic fingerprint in increased 21st century wildfire risk. However, the risks associated with individual aspects of anthropogenic aerosol and greenhouse gases (GHG) emissions, biomass burning and land use/land cover change remain unknown. Here, we use new climate model large ensembles isolating these influences to show that GHG-driven increases in extreme fire weather conditions have been balanced by aerosol-driven cooling throughout the 20th century. This compensation is projected to disappear due to future reductions in aerosol emissions, causing unprecedented increases in extreme fire weather risk in the 21st century as GHGs continue to rise. Changes to temperature and relative humidity drive the largest shifts in extreme fire weather conditions; this is particularly apparent over the Amazon, where GHGs cause a seven-fold increase by 2080. Our results allow increased understanding of the interacting roles of anthropogenic stressors in altering the regional expression of future wildfire risk.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-20570-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20570-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-20570-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().