A population-based controlled experiment assessing the epidemiological impact of digital contact tracing
Pablo Rodríguez,
Santiago Graña,
Eva Elisa Alvarez-León,
Manuela Battaglini,
Francisco Javier Darias,
Miguel A. Hernán,
Raquel López,
Paloma Llaneza,
Maria Cristina Martín,
Oriana Ramirez-Rubio,
Adriana Romaní,
Berta Suárez-Rodríguez,
Javier Sánchez-Monedero,
Alex Arenas and
Lucas Lacasa ()
Additional contact information
Pablo Rodríguez: Member, Association for Computing Machinery (ACM)
Santiago Graña: Secretaría de Estado de Digitalización e Inteligencia Artificial (SEDIA), Secretaría General de Administración Digital, Ministerio de Asuntos Económicos y Transformación Digital
Eva Elisa Alvarez-León: Dirección General de Salud Pública, Servicio Canario de la Salud, Gobierno de Canarias
Manuela Battaglini: Transparent Internet
Francisco Javier Darias: Dirección General de Salud Pública, Servicio Canario de la Salud, Gobierno de Canarias
Miguel A. Hernán: Department of Epidemiology, Harvard TH Chan School of Public Health
Raquel López: User Experience, INDRA
Paloma Llaneza: Razona LegalTech
Maria Cristina Martín: User Experience, INDRA
Oriana Ramirez-Rubio: Centro de Coordinación de Alertas y Emergencias Sanitarias. Dirección General de Salud Pública, Calidad e Innovación. Ministerio de Sanidad
Adriana Romaní: Centro de Coordinación de Alertas y Emergencias Sanitarias. Dirección General de Salud Pública, Calidad e Innovación. Ministerio de Sanidad
Berta Suárez-Rodríguez: Centro de Coordinación de Alertas y Emergencias Sanitarias. Dirección General de Salud Pública, Calidad e Innovación. Ministerio de Sanidad
Javier Sánchez-Monedero: School of Journalism, Media and Culture, Cardiff University
Alex Arenas: Departament d’Enginyeria Informática i Matemátiques, Universitat Rovira i Virgili
Lucas Lacasa: School of Mathematical Sciences, Queen Mary University of London
Nature Communications, 2021, vol. 12, issue 1, 1-6
Abstract:
Abstract While Digital contact tracing (DCT) has been argued to be a valuable complement to manual tracing in the containment of COVID-19, no empirical evidence of its effectiveness is available to date. Here, we report the results of a 4-week population-based controlled experiment that took place in La Gomera (Canary Islands, Spain) between June and July 2020, where we assessed the epidemiological impact of the Spanish DCT app Radar Covid. After a substantial communication campaign, we estimate that at least 33% of the population adopted the technology and further showed relatively high adherence and compliance as well as a quick turnaround time. The app detects about 6.3 close-contacts per primary simulated infection, a significant percentage being contacts with strangers, although the spontaneous follow-up rate of these notified cases is low. Overall, these results provide experimental evidence of the potential usefulness of DCT during an epidemic outbreak in a real population.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-20817-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20817-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-20817-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().