EconPapers    
Economics at your fingertips  
 

Imaging non-collinear antiferromagnetic textures via single spin relaxometry

Aurore Finco, Angela Haykal, Rana Tanos, Florentin Fabre, Saddem Chouaieb, Waseem Akhtar, Isabelle Robert-Philip, William Legrand, Fernando Ajejas, Karim Bouzehouane, Nicolas Reyren, Thibaut Devolder, Jean-Paul Adam, Joo- Von Kim, Vincent Cros and Vincent Jacques ()
Additional contact information
Aurore Finco: Université de Montpellier and CNRS
Angela Haykal: Université de Montpellier and CNRS
Rana Tanos: Université de Montpellier and CNRS
Florentin Fabre: Université de Montpellier and CNRS
Saddem Chouaieb: Université de Montpellier and CNRS
Waseem Akhtar: Université de Montpellier and CNRS
Isabelle Robert-Philip: Université de Montpellier and CNRS
William Legrand: Thales, Université Paris-Saclay
Fernando Ajejas: Thales, Université Paris-Saclay
Karim Bouzehouane: Thales, Université Paris-Saclay
Nicolas Reyren: Thales, Université Paris-Saclay
Thibaut Devolder: CNRS, Université Paris-Saclay
Jean-Paul Adam: CNRS, Université Paris-Saclay
Joo- Von Kim: CNRS, Université Paris-Saclay
Vincent Cros: Thales, Université Paris-Saclay
Vincent Jacques: Université de Montpellier and CNRS

Nature Communications, 2021, vol. 12, issue 1, 1-6

Abstract: Abstract Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnetic spin textures can be imaged by probing the magnetic noise they locally produce via thermal populations of magnons. To this end, we perform nanoscale, all-optical relaxometry with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in diamond. Magnetic noise is detected through an increase of the spin relaxation rate of the NV defect, which results in an overall reduction of its photoluminescence signal under continuous laser illumination. As a proof-of-concept, the efficiency of the method is demonstrated by imaging various spin textures in synthetic antiferromagnets, including domain walls, spin spirals and antiferromagnetic skyrmions. This imaging procedure could be extended to a large class of intrinsic antiferromagnets and opens up new opportunities for studying the physics of localized spin wave modes for magnonics.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-20995-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-20995-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-20995-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-20995-x