EconPapers    
Economics at your fingertips  
 

Large-area integration of two-dimensional materials and their heterostructures by wafer bonding

Arne Quellmalz (), Xiaojing Wang, Simon Sawallich, Burkay Uzlu, Martin Otto, Stefan Wagner, Zhenxing Wang, Maximilian Prechtl, Oliver Hartwig, Siwei Luo, Georg S. Duesberg, Max C. Lemme, Kristinn B. Gylfason, Niclas Roxhed, Göran Stemme and Frank Niklaus ()
Additional contact information
Arne Quellmalz: KTH Royal Institute of Technology
Xiaojing Wang: KTH Royal Institute of Technology
Simon Sawallich: Protemics GmbH
Burkay Uzlu: RWTH Aachen University
Martin Otto: Advanced Microelectronic Center Aachen (AMICA)
Stefan Wagner: Advanced Microelectronic Center Aachen (AMICA)
Zhenxing Wang: Advanced Microelectronic Center Aachen (AMICA)
Maximilian Prechtl: Universität der Bundeswehr München
Oliver Hartwig: Universität der Bundeswehr München
Siwei Luo: Universität der Bundeswehr München
Georg S. Duesberg: Universität der Bundeswehr München
Max C. Lemme: RWTH Aachen University
Kristinn B. Gylfason: KTH Royal Institute of Technology
Niclas Roxhed: KTH Royal Institute of Technology
Göran Stemme: KTH Royal Institute of Technology
Frank Niklaus: KTH Royal Institute of Technology

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to $$4520\;{\mathrm{cm}}^2{\mathrm{V}}^{ - 1}{\mathrm{s}}^{ - 1}$$ 4520 cm 2 V − 1 s − 1 . Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21136-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21136-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21136-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21136-0