EconPapers    
Economics at your fingertips  
 

Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2

S. X. M. Riberolles (), T. V. Trevisan, B. Kuthanazhi, T. W. Heitmann, F. Ye, D. C. Johnston, S. L. Bud’ko, D. H. Ryan, P. C. Canfield, A. Kreyssig, A. Vishwanath, R. J. McQueeney, L. -L. Wang, P. P. Orth and B. G. Ueland ()
Additional contact information
S. X. M. Riberolles: Ames Laboratory
T. V. Trevisan: Ames Laboratory
B. Kuthanazhi: Ames Laboratory
T. W. Heitmann: University of Missouri Research Reactor
F. Ye: Oak Ridge National Laboratory
D. C. Johnston: Ames Laboratory
S. L. Bud’ko: Ames Laboratory
D. H. Ryan: McGill University
P. C. Canfield: Ames Laboratory
A. Kreyssig: Ames Laboratory
A. Vishwanath: Harvard University
R. J. McQueeney: Ames Laboratory
L. -L. Wang: Ames Laboratory
P. P. Orth: Ames Laboratory
B. G. Ueland: Ames Laboratory

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: $${C}_{2}\times {\mathcal{T}}={2}^{\prime}$$ C 2 × T = 2 ′ . Surfaces protected by $${2}^{\prime}$$ 2 ′ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21154-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21154-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21154-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21154-y