Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria
Eric J. N. Helfrich,
Reiko Ueoka,
Marc G. Chevrette,
Franziska Hemmerling,
Xiaowen Lu,
Stefan Leopold-Messer,
Hannah A. Minas,
Adrien Y. Burch,
Steven E. Lindow,
Jörn Piel () and
Marnix H. Medema ()
Additional contact information
Eric J. N. Helfrich: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Reiko Ueoka: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Marc G. Chevrette: University of Wisconsin-Madison
Franziska Hemmerling: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Xiaowen Lu: Wageningen University
Stefan Leopold-Messer: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Hannah A. Minas: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Adrien Y. Burch: University of California at Berkeley
Steven E. Lindow: University of California at Berkeley
Jörn Piel: Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich
Marnix H. Medema: Wageningen University
Nature Communications, 2021, vol. 12, issue 1, 1-14
Abstract:
Abstract Trans-acyltransferase polyketide synthases (trans-AT PKSs) are bacterial multimodular enzymes that biosynthesize diverse pharmaceutically and ecologically important polyketides. A notable feature of this natural product class is the existence of chemical hybrids that combine core moieties from different polyketide structures. To understand the prevalence, biosynthetic basis, and evolutionary patterns of this phenomenon, we developed transPACT, a phylogenomic algorithm to automate global classification of trans-AT PKS modules across bacteria and applied it to 1782 trans-AT PKS gene clusters. These analyses reveal widespread exchange patterns suggesting recombination of extended PKS module series as an important mechanism for metabolic diversification in this natural product class. For three plant-associated bacteria, i.e., the root colonizer Gynuella sunshinyii and the pathogens Xanthomonas cannabis and Pseudomonas syringae, we demonstrate the utility of this computational approach for uncovering cryptic relationships between polyketides, accelerating polyketide mining from fragmented genome sequences, and discovering polyketide variants with conserved moieties of interest. As natural combinatorial hybrids are rare among the more commonly studied cis-AT PKSs, this study paves the way towards evolutionarily informed, rational PKS engineering to produce chimeric trans-AT PKS-derived polyketides.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21163-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21163-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21163-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().