The singularity response reveals entrainment properties of the plant circadian clock
Kosaku Masuda,
Isao T. Tokuda,
Norihito Nakamichi and
Hirokazu Fukuda ()
Additional contact information
Kosaku Masuda: Osaka Prefecture University
Isao T. Tokuda: Ritsumeikan University
Norihito Nakamichi: Nagoya University
Hirokazu Fukuda: Osaka Prefecture University
Nature Communications, 2021, vol. 12, issue 1, 1-7
Abstract:
Abstract Circadian clocks allow organisms to synchronize their physiological processes to diurnal variations. A phase response curve allows researchers to understand clock entrainment by revealing how signals adjust clock genes differently according to the phase in which they are applied. Comprehensively investigating these curves is difficult, however, because of the cost of measuring them experimentally. Here we demonstrate that fundamental properties of the curve are recoverable from the singularity response, which is easily measured by applying a single stimulus to a cellular network in a desynchronized state (i.e. singularity). We show that the singularity response of Arabidopsis to light/dark and temperature stimuli depends on the properties of the phase response curve for these stimuli. The measured singularity responses not only allow the curves to be precisely reconstructed but also reveal organ-specific properties of the plant circadian clock. The method is not only simple and accurate, but also general and applicable to other coupled oscillator systems as long as the oscillators can be desynchronized. This simplified method may allow the entrainment properties of the circadian clock of both plants and other species in nature.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21167-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21167-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21167-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().