Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope
Kateryna Trofymchuk (),
Viktorija Glembockyte (),
Lennart Grabenhorst,
Florian Steiner,
Carolin Vietz,
Cindy Close,
Martina Pfeiffer,
Lars Richter,
Max L. Schütte,
Florian Selbach,
Renukka Yaadav,
Jonas Zähringer,
Qingshan Wei,
Aydogan Ozcan,
Birka Lalkens,
Guillermo P. Acuna () and
Philip Tinnefeld ()
Additional contact information
Kateryna Trofymchuk: Ludwig-Maximilians-Universität München
Viktorija Glembockyte: Ludwig-Maximilians-Universität München
Lennart Grabenhorst: Ludwig-Maximilians-Universität München
Florian Steiner: Ludwig-Maximilians-Universität München
Carolin Vietz: Technische Universität Braunschweig
Cindy Close: Ludwig-Maximilians-Universität München
Martina Pfeiffer: Ludwig-Maximilians-Universität München
Lars Richter: Technische Universität Braunschweig
Max L. Schütte: Technische Universität Braunschweig
Florian Selbach: Ludwig-Maximilians-Universität München
Renukka Yaadav: Ludwig-Maximilians-Universität München
Jonas Zähringer: Ludwig-Maximilians-Universität München
Qingshan Wei: North Carolina State University
Aydogan Ozcan: University of California
Birka Lalkens: Laboratory for Emerging Nanometrology LENA
Guillermo P. Acuna: Université de Fribourg - Faculté des Sciences et Médicine
Philip Tinnefeld: Ludwig-Maximilians-Universität München
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract The advent of highly sensitive photodetectors and the development of photostabilization strategies made detecting the fluorescence of single molecules a routine task in many labs around the world. However, to this day, this process requires cost-intensive optical instruments due to the truly nanoscopic signal of a single emitter. Simplifying single-molecule detection would enable many exciting applications, e.g., in point-of-care diagnostic settings, where costly equipment would be prohibitive. Here, we introduce addressable NanoAntennas with Cleared HOtSpots (NACHOS) that are scaffolded by DNA origami nanostructures and can be specifically tailored for the incorporation of bioassays. Single emitters placed in NACHOS emit up to 461-fold (average of 89 ± 7-fold) brighter enabling their detection with a customary smartphone camera and an 8-US-dollar objective lens. To prove the applicability of our system, we built a portable, battery-powered smartphone microscope and successfully carried out an exemplary single-molecule detection assay for DNA specific to antibiotic-resistant Klebsiella pneumonia on the road.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21238-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21238-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21238-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().