Dissection of intercellular communication using the transcriptome-based framework ICELLNET
Floriane Noël,
Lucile Massenet-Regad,
Irit Carmi-Levy,
Antonio Cappuccio,
Maximilien Grandclaudon,
Coline Trichot,
Yann Kieffer,
Fatima Mechta-Grigoriou and
Vassili Soumelis ()
Additional contact information
Floriane Noël: INSERM U976, Equipe labellisée par la Ligue Nationale contre le Cancer
Lucile Massenet-Regad: INSERM U976, Equipe labellisée par la Ligue Nationale contre le Cancer
Irit Carmi-Levy: Institut Curie
Antonio Cappuccio: Institut Curie
Maximilien Grandclaudon: Institut Curie
Coline Trichot: INSERM U976, Equipe labellisée par la Ligue Nationale contre le Cancer
Yann Kieffer: Institut Curie
Fatima Mechta-Grigoriou: Institut Curie
Vassili Soumelis: INSERM U976, Equipe labellisée par la Ligue Nationale contre le Cancer
Nature Communications, 2021, vol. 12, issue 1, 1-16
Abstract:
Abstract Cell-to-cell communication can be inferred from ligand–receptor expression in cell transcriptomic datasets. However, important challenges remain: global integration of cell-to-cell communication; biological interpretation; and application to individual cell population transcriptomic profiles. We develop ICELLNET, a transcriptomic-based framework integrating: 1) an original expert-curated database of ligand–receptor interactions accounting for multiple subunits expression; 2) quantification of communication scores; 3) the possibility to connect a cell population of interest with 31 reference human cell types; and 4) three visualization modes to facilitate biological interpretation. We apply ICELLNET to three datasets generated through RNA-seq, single-cell RNA-seq, and microarray. ICELLNET reveals autocrine IL-10 control of human dendritic cell communication with up to 12 cell types. Four of them (T cells, keratinocytes, neutrophils, pDC) are further tested and experimentally validated. In summary, ICELLNET is a global, versatile, biologically validated, and easy-to-use framework to dissect cell communication from individual or multiple cell-based transcriptomic profiles.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21244-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21244-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21244-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().