The evolution of critical thermal limits of life on Earth
Joanne M. Bennett (),
Jennifer Sunday,
Piero Calosi,
Fabricio Villalobos,
Brezo Martínez,
Rafael Molina-Venegas,
Miguel B. Araújo,
Adam C. Algar,
Susana Clusella-Trullas,
Bradford A. Hawkins,
Sally A. Keith,
Ingolf Kühn,
Carsten Rahbek,
Laura Rodríguez,
Alexander Singer,
Ignacio Morales-Castilla and
Miguel Ángel Olalla-Tárraga
Additional contact information
Joanne M. Bennett: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Jennifer Sunday: McGill University
Piero Calosi: Université du Québec à Rimouski
Fabricio Villalobos: Universidade Federal de Goiás
Brezo Martínez: Universidad Rey Juan Carlos
Rafael Molina-Venegas: Universidad de Alcalá
Miguel B. Araújo: CSIC
Adam C. Algar: University of Nottingham
Susana Clusella-Trullas: Stellenbosch University
Bradford A. Hawkins: University of California-Irvine
Sally A. Keith: Lancaster University
Ingolf Kühn: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Carsten Rahbek: University of Copenhagen
Laura Rodríguez: Universidad Rey Juan Carlos
Alexander Singer: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Ignacio Morales-Castilla: Universidad de Alcalá
Miguel Ángel Olalla-Tárraga: Universidad Rey Juan Carlos
Nature Communications, 2021, vol. 12, issue 1, 1-9
Abstract:
Abstract Understanding how species’ thermal limits have evolved across the tree of life is central to predicting species’ responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary ‘attractors’ that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21263-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21263-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21263-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().