EconPapers    
Economics at your fingertips  
 

Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast

Zeyu Lu, Bingyin Peng (), Birgitta E. Ebert, Geoff Dumsday and Claudia E. Vickers ()
Additional contact information
Zeyu Lu: the University of Queensland
Bingyin Peng: the University of Queensland
Birgitta E. Ebert: the University of Queensland
Geoff Dumsday: CSIRO Manufacturing
Claudia E. Vickers: the University of Queensland

Nature Communications, 2021, vol. 12, issue 1, 1-13

Abstract: Abstract In metabolic engineering, loss-of-function experiments are used to understand and optimise metabolism. A conditional gene inactivation tool is required when gene deletion is lethal or detrimental to growth. Here, we exploit auxin-inducible protein degradation as a metabolic engineering approach in yeast. We demonstrate its effectiveness using terpenoid production. First, we target an essential prenyl-pyrophosphate metabolism protein, farnesyl pyrophosphate synthase (Erg20p). Degradation successfully redirects metabolic flux toward monoterpene (C10) production. Second, depleting hexokinase-2, a key protein in glucose signalling transduction, lifts glucose repression and boosts production of sesquiterpene (C15) nerolidol to 3.5 g L−1 in flask cultivation. Third, depleting acetyl-CoA carboxylase (Acc1p), another essential protein, delivers growth arrest without diminishing production capacity in nerolidol-producing yeast, providing a strategy to decouple growth and production. These studies demonstrate auxin-mediated protein degradation as an advanced tool for metabolic engineering. It also has potential for broader metabolic perturbation studies to better understand metabolism.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21313-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21313-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21313-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21313-1