EconPapers    
Economics at your fingertips  
 

Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction

C. Mariette (), M. Lorenc (), H. Cailleau, E. Collet, L. Guérin, A. Volte, E. Trzop, R. Bertoni, X. Dong, B. Lépine, O. Hernandez, E. Janod, L. Cario, V. Ta Phuoc, S. Ohkoshi, H. Tokoro, L. Patthey, A. Babic, I. Usov, D. Ozerov, L. Sala, S. Ebner, P. Böhler, A. Keller, A. Oggenfuss, T. Zmofing, S. Redford, S. Vetter, R. Follath, P. Juranic, A. Schreiber, P. Beaud, V. Esposito, Y. Deng, G. Ingold, M. Chergui, G. F. Mancini, R. Mankowsky, C. Svetina, S. Zerdane, A. Mozzanica, A. Bosak, M. Wulff, M. Levantino, H. Lemke and M. Cammarata ()
Additional contact information
C. Mariette: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
M. Lorenc: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
H. Cailleau: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
E. Collet: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
L. Guérin: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
A. Volte: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
E. Trzop: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
R. Bertoni: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
X. Dong: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
B. Lépine: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
O. Hernandez: Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226
E. Janod: Université de Nantes, CNRS
L. Cario: Université de Nantes, CNRS
V. Ta Phuoc: GREMAN—UMR 7347 CNRS, Université de Tours
S. Ohkoshi: The University of Tokyo
H. Tokoro: The University of Tokyo
L. Patthey: SwissFEL, Paul Scherrer Institut
A. Babic: SwissFEL, Paul Scherrer Institut
I. Usov: SwissFEL, Paul Scherrer Institut
D. Ozerov: SwissFEL, Paul Scherrer Institut
L. Sala: SwissFEL, Paul Scherrer Institut
S. Ebner: SwissFEL, Paul Scherrer Institut
P. Böhler: SwissFEL, Paul Scherrer Institut
A. Keller: SwissFEL, Paul Scherrer Institut
A. Oggenfuss: SwissFEL, Paul Scherrer Institut
T. Zmofing: SwissFEL, Paul Scherrer Institut
S. Redford: SwissFEL, Paul Scherrer Institut
S. Vetter: SwissFEL, Paul Scherrer Institut
R. Follath: SwissFEL, Paul Scherrer Institut
P. Juranic: SwissFEL, Paul Scherrer Institut
A. Schreiber: SwissFEL, Paul Scherrer Institut
P. Beaud: SwissFEL, Paul Scherrer Institut
V. Esposito: SwissFEL, Paul Scherrer Institut
Y. Deng: SwissFEL, Paul Scherrer Institut
G. Ingold: SwissFEL, Paul Scherrer Institut
M. Chergui: Laboratory of Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne
G. F. Mancini: SwissFEL, Paul Scherrer Institut
R. Mankowsky: SwissFEL, Paul Scherrer Institut
C. Svetina: SwissFEL, Paul Scherrer Institut
S. Zerdane: SwissFEL, Paul Scherrer Institut
A. Mozzanica: SwissFEL, Paul Scherrer Institut
A. Bosak: European Synchrotron Radiation Facility
M. Wulff: European Synchrotron Radiation Facility
M. Levantino: European Synchrotron Radiation Facility
H. Lemke: SwissFEL, Paul Scherrer Institut
M. Cammarata: Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21316-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21316-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21316-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21316-y