EconPapers    
Economics at your fingertips  
 

A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme

Xing Zhu, Yunfei Gao, Xijun Wang, Vasudev Haribal, Junchen Liu, Luke M. Neal, Zhenghong Bao, Zili Wu, Hua Wang and Fanxing Li ()
Additional contact information
Xing Zhu: North Carolina State University
Yunfei Gao: North Carolina State University
Xijun Wang: North Carolina State University
Vasudev Haribal: North Carolina State University
Junchen Liu: North Carolina State University
Luke M. Neal: North Carolina State University
Zhenghong Bao: Chemical Science Division and Center for Nanophase Materials Sciences
Zili Wu: Chemical Science Division and Center for Nanophase Materials Sciences
Hua Wang: Kunming University of Science and Technology
Fanxing Li: North Carolina State University

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract Styrene is an important commodity chemical that is highly energy and CO2 intensive to produce. We report a redox oxidative dehydrogenation (redox-ODH) strategy to efficiently produce styrene. Facilitated by a multifunctional (Ca/Mn)1−xO@KFeO2 core-shell redox catalyst which acts as (i) a heterogeneous catalyst, (ii) an oxygen separation agent, and (iii) a selective hydrogen combustion material, redox-ODH auto-thermally converts ethylbenzene to styrene with up to 97% single-pass conversion and >94% selectivity. This represents a 72% yield increase compared to commercial dehydrogenation on a relative basis, leading to 82% energy savings and 79% CO2 emission reduction. The redox catalyst is composed of a catalytically active KFeO2 shell and a (Ca/Mn)1−xO core for reversible lattice oxygen storage and donation. The lattice oxygen donation from (Ca/Mn)1−xO sacrificially stabilizes Fe3+ in the shell to maintain high catalytic activity and coke resistance. From a practical standpoint, the redox catalyst exhibits excellent long-term performance under industrially compatible conditions.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21374-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21374-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21374-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21374-2