EconPapers    
Economics at your fingertips  
 

Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction

Núria J. Divins, David Kordus, Janis Timoshenko, Ilya Sinev, Ioannis Zegkinoglou, Arno Bergmann, See Wee Chee, Simon Widrinna, Osman Karslıoğlu, Hemma Mistry, Mauricio Lopez Luna, Jian Qiang Zhong, Adam S. Hoffman, Alexey Boubnov, J. Anibal Boscoboinik, Marc Heggen, Rafal E. Dunin-Borkowski, Simon R. Bare and Beatriz Roldan Cuenya ()
Additional contact information
Núria J. Divins: Ruhr University Bochum
David Kordus: Ruhr University Bochum
Janis Timoshenko: Fritz-Haber Institute of the Max Planck Society
Ilya Sinev: Ruhr University Bochum
Ioannis Zegkinoglou: Ruhr University Bochum
Arno Bergmann: Fritz-Haber Institute of the Max Planck Society
See Wee Chee: Fritz-Haber Institute of the Max Planck Society
Simon Widrinna: Ruhr University Bochum
Osman Karslıoğlu: Fritz-Haber Institute of the Max Planck Society
Hemma Mistry: Ruhr University Bochum
Mauricio Lopez Luna: Fritz-Haber Institute of the Max Planck Society
Jian Qiang Zhong: Fritz-Haber Institute of the Max Planck Society
Adam S. Hoffman: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
Alexey Boubnov: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
J. Anibal Boscoboinik: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton
Marc Heggen: Forschungszentrum Jülich
Rafal E. Dunin-Borkowski: Forschungszentrum Jülich
Simon R. Bare: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
Beatriz Roldan Cuenya: Fritz-Haber Institute of the Max Planck Society

Nature Communications, 2021, vol. 12, issue 1, 1-10

Abstract: Abstract Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21604-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21604-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21604-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21604-7