EconPapers    
Economics at your fingertips  
 

Ultracold atom interferometry in space

Maike D. Lachmann, Holger Ahlers, Dennis Becker, Aline N. Dinkelaker, Jens Grosse, Ortwin Hellmig, Hauke Müntinga, Vladimir Schkolnik, Stephan T. Seidel, Thijs Wendrich, André Wenzlawski, Benjamin Carrick, Naceur Gaaloul, Daniel Lüdtke, Claus Braxmaier, Wolfgang Ertmer, Markus Krutzik, Claus Lämmerzahl, Achim Peters, Wolfgang P. Schleich, Klaus Sengstock, Andreas Wicht, Patrick Windpassinger and Ernst M. Rasel ()
Additional contact information
Maike D. Lachmann: Leibniz University Hannover
Holger Ahlers: Leibniz University Hannover
Dennis Becker: Leibniz University Hannover
Aline N. Dinkelaker: Humboldt-Universität zu Berlin
Jens Grosse: University of Bremen
Ortwin Hellmig: University Hamburg
Hauke Müntinga: University of Bremen
Vladimir Schkolnik: Humboldt-Universität zu Berlin
Stephan T. Seidel: Leibniz University Hannover
Thijs Wendrich: Leibniz University Hannover
André Wenzlawski: Johannes Gutenberg University Mainz (JGU)
Benjamin Carrick: German Aerospace Center (DLR)
Naceur Gaaloul: Leibniz University Hannover
Daniel Lüdtke: German Aerospace Center (DLR)
Claus Braxmaier: University of Bremen
Wolfgang Ertmer: Leibniz University Hannover
Markus Krutzik: Humboldt-Universität zu Berlin
Claus Lämmerzahl: University of Bremen
Achim Peters: Humboldt-Universität zu Berlin
Wolfgang P. Schleich: Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
Klaus Sengstock: University Hamburg
Andreas Wicht: Leibniz-Institut für Höchstfrequenztechnik
Patrick Windpassinger: Johannes Gutenberg University Mainz (JGU)
Ernst M. Rasel: Leibniz University Hannover

Nature Communications, 2021, vol. 12, issue 1, 1-6

Abstract: Abstract Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21628-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21628-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21628-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21628-z