Microtubules orchestrate local translation to enable cardiac growth
Emily A. Scarborough,
Keita Uchida,
Maria Vogel,
Noa Erlitzki,
Meghana Iyer,
Sai Aung Phyo,
Alexey Bogush,
Izhak Kehat and
Benjamin L. Prosser ()
Additional contact information
Emily A. Scarborough: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Keita Uchida: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Maria Vogel: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Noa Erlitzki: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Meghana Iyer: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Sai Aung Phyo: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Alexey Bogush: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Izhak Kehat: Technion-Israel Institute of Technology
Benjamin L. Prosser: Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine
Nature Communications, 2021, vol. 12, issue 1, 1-13
Abstract:
Abstract Hypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation – and not simply translation rate – is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21685-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21685-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21685-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().