EconPapers    
Economics at your fingertips  
 

Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield

Peter J. Budden, Leah R. Weiss, Matthias Müller, Naitik A. Panjwani, Simon Dowland, Jesse R. Allardice, Michael Ganschow, Jan Freudenberg, Jan Behrends (), Uwe H. F. Bunz () and Richard H. Friend ()
Additional contact information
Peter J. Budden: Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue
Leah R. Weiss: Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue
Matthias Müller: Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270
Naitik A. Panjwani: Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin
Simon Dowland: Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue
Jesse R. Allardice: Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue
Michael Ganschow: Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270
Jan Freudenberg: Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270
Jan Behrends: Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin
Uwe H. F. Bunz: Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270
Richard H. Friend: Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21719-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21719-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21719-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21719-x