EconPapers    
Economics at your fingertips  
 

Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction

A. Sanchez, K. Amini, S.-J. Wang, T. Steinle, B. Belsa, J. Danek, A. T. Le, X. Liu, R. Moshammer, T. Pfeifer, M. Richter, J. Ullrich, S. Gräfe, C. D. Lin and J. Biegert ()
Additional contact information
A. Sanchez: The Barcelona Institute of Science and Technology
K. Amini: The Barcelona Institute of Science and Technology
S.-J. Wang: Kansas State University
T. Steinle: The Barcelona Institute of Science and Technology
B. Belsa: The Barcelona Institute of Science and Technology
J. Danek: Kansas State University
A. T. Le: Kansas State University
X. Liu: The Barcelona Institute of Science and Technology
R. Moshammer: Max-Planck-Institut für Kernphysik
T. Pfeifer: Max-Planck-Institut für Kernphysik
M. Richter: Physikalisch-Technische Bundesanstalt
J. Ullrich: Max-Planck-Institut für Kernphysik
S. Gräfe: Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena
C. D. Lin: Kansas State University
J. Biegert: The Barcelona Institute of Science and Technology

Nature Communications, 2021, vol. 12, issue 1, 1-9

Abstract: Abstract Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-21855-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21855-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-21855-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21855-4