Removing leakage-induced correlated errors in superconducting quantum error correction
M. McEwen,
D. Kafri,
Z. Chen,
J. Atalaya,
K. J. Satzinger,
C. Quintana,
P. V. Klimov,
D. Sank,
C. Gidney,
A. G. Fowler,
F. Arute,
K. Arya,
B. Buckley,
B. Burkett,
N. Bushnell,
B. Chiaro,
R. Collins,
S. Demura,
A. Dunsworth,
C. Erickson,
B. Foxen,
M. Giustina,
T. Huang,
S. Hong,
E. Jeffrey,
S. Kim,
K. Kechedzhi,
F. Kostritsa,
P. Laptev,
A. Megrant,
X. Mi,
J. Mutus,
O. Naaman,
M. Neeley,
C. Neill,
M. Niu,
A. Paler,
N. Redd,
P. Roushan,
T. C. White,
J. Yao,
P. Yeh,
A. Zalcman,
Yu Chen,
V. N. Smelyanskiy,
John M. Martinis,
H. Neven,
J. Kelly,
A. N. Korotkov,
A. G. Petukhov and
R. Barends ()
Additional contact information
M. McEwen: University of California
D. Kafri: Google
Z. Chen: Google
J. Atalaya: Google
K. J. Satzinger: Google
C. Quintana: Google
P. V. Klimov: Google
D. Sank: Google
C. Gidney: Google
A. G. Fowler: Google
F. Arute: Google
K. Arya: Google
B. Buckley: Google
B. Burkett: Google
N. Bushnell: Google
B. Chiaro: Google
R. Collins: Google
S. Demura: Google
A. Dunsworth: Google
C. Erickson: Google
B. Foxen: Google
M. Giustina: Google
T. Huang: Google
S. Hong: Google
E. Jeffrey: Google
S. Kim: Google
K. Kechedzhi: Google
F. Kostritsa: Google
P. Laptev: Google
A. Megrant: Google
X. Mi: Google
J. Mutus: Google
O. Naaman: Google
M. Neeley: Google
C. Neill: Google
M. Niu: Google
A. Paler: Johannes Kepler University
N. Redd: Google
P. Roushan: Google
T. C. White: Google
J. Yao: Google
P. Yeh: Google
A. Zalcman: Google
Yu Chen: Google
V. N. Smelyanskiy: Google
John M. Martinis: University of California
H. Neven: Google
J. Kelly: Google
A. N. Korotkov: Google
A. G. Petukhov: Google
R. Barends: Google
Nature Communications, 2021, vol. 12, issue 1, 1-7
Abstract:
Abstract Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21982-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21982-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21982-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().