EconPapers    
Economics at your fingertips  
 

Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency

Nicola Gasparini (), Franco V. A. Camargo, Stefan Frühwald, Tetsuhiko Nagahara, Andrej Classen, Steffen Roland, Andrew Wadsworth, Vasilis G. Gregoriou, Christos L. Chochos, Dieter Neher, Michael Salvador, Derya Baran, Iain McCulloch, Andreas Görling, Larry Lüer (), Giulio Cerullo and Christoph J. Brabec ()
Additional contact information
Nicola Gasparini: Imperial College London
Franco V. A. Camargo: IFN-CNR
Stefan Frühwald: Friedrich Alexander-University Erlangen-Nuremberg
Tetsuhiko Nagahara: IFN-CNR
Andrej Classen: Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich Alexander-University Erlangen-Nuremberg
Steffen Roland: Institut für Physik und Astronomie Physik weicher Materie University of Potsdam
Andrew Wadsworth: University of Oxford
Vasilis G. Gregoriou: Advent Technologies SA
Christos L. Chochos: Advent Technologies SA
Dieter Neher: Institut für Physik und Astronomie Physik weicher Materie University of Potsdam
Michael Salvador: King Abdullah University of Science and Technology (KAUST)
Derya Baran: King Abdullah University of Science and Technology (KAUST)
Iain McCulloch: University of Oxford
Andreas Görling: Friedrich Alexander-University Erlangen-Nuremberg
Larry Lüer: Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich Alexander-University Erlangen-Nuremberg
Giulio Cerullo: IFN-CNR
Christoph J. Brabec: Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich Alexander-University Erlangen-Nuremberg

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22032-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22032-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22032-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22032-3