A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids
Jürgen F. H. Strassert,
Iker Irisarri,
Tom A. Williams and
Fabien Burki ()
Additional contact information
Jürgen F. H. Strassert: Uppsala University
Iker Irisarri: Uppsala University
Tom A. Williams: University of Bristol, Life Sciences Building
Fabien Burki: Uppsala University
Nature Communications, 2021, vol. 12, issue 1, 1-13
Abstract:
Abstract In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-22044-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22044-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-22044-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().