EconPapers    
Economics at your fingertips  
 

Bomb 137Cs in modern honey reveals a regional soil control on pollutant cycling by plants

J. M. Kaste (), P. Volante and A. J. Elmore
Additional contact information
J. M. Kaste: Geology Department, William & Mary
P. Volante: Geology Department, William & Mary
A. J. Elmore: University of Maryland Center for Environmental Science

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract 137Cs is a long-lived (30-year radioactive half-life) fission product dispersed globally by mid-20th century atmospheric nuclear weapons testing. Here we show that vegetation thousands of kilometers from testing sites continues to cycle 137Cs because it mimics potassium, and consequently, bees magnify this radionuclide in honey. There were no atmospheric weapons tests in the eastern United States, but most honey here has detectable 137Cs at >0.03 Bq kg−1, and in the southeastern U.S., activities can be >500 times higher. By measuring honey, we show regional patterns in the biogeochemical cycling of 137Cs and conclude that plants and animals receive disproportionally high exposure to ionizing radiation from 137Cs in low potassium soils. In several cases, the presence of 137Cs more than doubled the ionizing radiation from gamma and x-rays in the honey, indicating that despite its radioactive half-life, the environmental legacy of regional 137Cs pollution can persist for more than six decades.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22081-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22081-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22081-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22081-8