EconPapers    
Economics at your fingertips  
 

Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide

Flávio H. Feres, Rafael A. Mayer, Lukas Wehmeier, Francisco C. B. Maia, E. R. Viana, Angelo Malachias, Hans A. Bechtel, J. Michael Klopf, Lukas M. Eng, Susanne C. Kehr, J. C. González, Raul O. Freitas () and Ingrid D. Barcelos ()
Additional contact information
Flávio H. Feres: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)
Rafael A. Mayer: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)
Lukas Wehmeier: Technische Universität Dresden
Francisco C. B. Maia: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)
E. R. Viana: Universidade Tecnológica Federal do Paraná (UTFPR)
Angelo Malachias: Universidade Federal de Minas Gerais (UFMG)
Hans A. Bechtel: Advanced Light Source (ALS), Lawrence Berkeley National Laboratory
J. Michael Klopf: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf
Lukas M. Eng: Technische Universität Dresden
Susanne C. Kehr: Technische Universität Dresden
J. C. González: Universidade Federal de Minas Gerais (UFMG)
Raul O. Freitas: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)
Ingrid D. Barcelos: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)

Nature Communications, 2021, vol. 12, issue 1, 1-9

Abstract: Abstract Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry–Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22209-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22209-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22209-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22209-w