EconPapers    
Economics at your fingertips  
 

Extreme melt season ice layers reduce firn permeability across Greenland

Riley Culberg (), Dustin M. Schroeder and Winnie Chu
Additional contact information
Riley Culberg: Stanford University
Dustin M. Schroeder: Stanford University
Winnie Chu: Georgia Institute of Technology

Nature Communications, 2021, vol. 12, issue 1, 1-9

Abstract: Abstract Surface meltwater runoff dominates present-day mass loss from the Greenland Ice Sheet. In Greenland’s interior, porous firn can limit runoff by retaining meltwater unless perched low-permeability horizons, such as ice slabs, develop and restrict percolation. Recent observations suggest that such horizons might develop rapidly during extreme melt seasons. Here we present radar sounding evidence that an extensive near surface melt layer formed following the extreme melt season in 2012. This layer was still present in 2017 in regions up to 700 m higher in elevation and 160 km further inland than known ice slabs. We find that melt layer formation is driven by local, short-timescale thermal and hydrologic processes in addition to mean climate state. These melt layers reduce vertical percolation pathways, and, under appropriate firn temperature and surface melt conditions, encourage further ice aggregation at their horizon. Therefore, the frequency of extreme melt seasons relative to the rate at which pore space and cold content regenerates above the most recent melt layer may be a key determinant of the firn’s multi-year response to surface melt.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22656-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22656-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22656-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22656-5