EconPapers    
Economics at your fingertips  
 

Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure

Cuiping Han, Hongfei Li (), Yu Li, Jiaxiong Zhu and Chunyi Zhi ()
Additional contact information
Cuiping Han: City University of Hong Kong, Kowloon
Hongfei Li: Songshan Lake Materials Laboratory
Yu Li: Shenzhen University
Jiaxiong Zhu: Songshan Lake Materials Laboratory
Chunyi Zhi: City University of Hong Kong, Kowloon

Nature Communications, 2021, vol. 12, issue 1, 1-12

Abstract: Abstract Rechargeable calcium-ion batteries are intriguing alternatives for use as post-lithium-ion batteries. However, the high charge density of divalent Ca2+ establishes a strong electrostatic interaction with the hosting lattice, which results in low-capacity Ca-ion storage. The ionic radius of Ca2+ further leads to sluggish ionic diffusion, hindering high-rate capability performances. Here, we report 5,7,12,14-pentacenetetrone (PT) as an organic crystal electrode active material for aqueous Ca-ion storage. The weak π-π stacked layers of the PT molecules render a flexible and robust structure suitable for Ca-ion storage. In addition, the channels within the PT crystal provide efficient pathways for fast ionic diffusion. The PT anode exhibits large specific capacity (150.5 mAh g-1 at 5 A g-1), high-rate capability (86.1 mAh g-1 at 100 A g-1) and favorable low-temperature performances. A mechanistic study identifies proton-assisted uptake/removal of Ca2+ in PT during cycling. First principle calculations suggest that the Ca ions tend to stay in the interstitial space of the PT channels and are stabilized by carbonyls from adjacent PT molecules. Finally, pairing with a high-voltage positive electrode, a full aqueous Ca-ion cell is assembled and tested.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22698-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22698-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22698-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22698-9