Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions
Boris V. Senkovskiy (),
Alexey V. Nenashev,
Seyed K. Alavi,
Yannic Falke,
Martin Hell,
Pantelis Bampoulis,
Dmitry V. Rybkovskiy,
Dmitry Yu. Usachov,
Alexander V. Fedorov,
Alexander I. Chernov,
Florian Gebhard,
Klaus Meerholz,
Dirk Hertel,
Masashi Arita,
Taichi Okuda,
Koji Miyamoto,
Kenya Shimada,
Felix R. Fischer,
Thomas Michely,
Sergei D. Baranovskii,
Klas Lindfors,
Thomas Szkopek () and
Alexander Grüneis ()
Additional contact information
Boris V. Senkovskiy: II. Physikalisches Institut, Universität zu Köln
Alexey V. Nenashev: Rzhanov Institute of Semiconductor Physics
Seyed K. Alavi: Universität zu Köln
Yannic Falke: II. Physikalisches Institut, Universität zu Köln
Martin Hell: II. Physikalisches Institut, Universität zu Köln
Pantelis Bampoulis: II. Physikalisches Institut, Universität zu Köln
Dmitry V. Rybkovskiy: Skolkovo Institute of Science and Technology
Dmitry Yu. Usachov: Saint Petersburg State University
Alexander V. Fedorov: IFW Dresden
Alexander I. Chernov: II. Physikalisches Institut, Universität zu Köln
Florian Gebhard: Philipps-Universität
Klaus Meerholz: Universität zu Köln
Dirk Hertel: Universität zu Köln
Masashi Arita: Hiroshima University
Taichi Okuda: Hiroshima University
Koji Miyamoto: Hiroshima University
Kenya Shimada: Hiroshima University
Felix R. Fischer: University of California at Berkeley
Thomas Michely: II. Physikalisches Institut, Universität zu Köln
Sergei D. Baranovskii: Philipps-Universität
Klas Lindfors: Universität zu Köln
Thomas Szkopek: McGill University
Alexander Grüneis: II. Physikalisches Institut, Universität zu Köln
Nature Communications, 2021, vol. 12, issue 1, 1-11
Abstract:
Abstract Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-22774-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22774-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-22774-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().