EconPapers    
Economics at your fingertips  
 

Engineering new limits to magnetostriction through metastability in iron-gallium alloys

P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom and J. T. Heron ()
Additional contact information
P. B. Meisenheimer: University of Michigan
R. A. Steinhardt: Cornell University
S. H. Sung: University of Michigan
L. D. Williams: University at Buffalo - The State University of New York
S. Zhuang: University of Wisconsin-Madison
M. E. Nowakowski: University of California
S. Novakov: University of Michigan
M. M. Torunbalci: Purdue University
B. Prasad: University of California
C. J. Zollner: Cornell University
Z. Wang: Cornell University
N. M. Dawley: Cornell University
J. Schubert: Peter Grünberg Institute (PGI-9) and JARA Fundamentals of Future Information Technology, Forschungszentrum Jülich GmbH
A. H. Hunter: University of Michigan
S. Manipatruni: Components Research, Intel Corporation
D. E. Nikonov: Components Research, Intel Corporation
I. A. Young: Components Research, Intel Corporation
L. Q. Chen: Penn State University
J. Bokor: University of California
S. A. Bhave: Purdue University
R. Ramesh: University of California
J.-M. Hu: University of Wisconsin-Madison
E. Kioupakis: University of Michigan
R. Hovden: University of Michigan
D. G. Schlom: Cornell University
J. T. Heron: University of Michigan

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1−xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1−xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1−xGax − [Pb(Mg1/3Nb2/3)O3]0.7−[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10−5 s m−1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-22793-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22793-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-22793-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22793-x