Protecting local water quality has global benefits
John A. Downing (),
Stephen Polasky,
Sheila M. Olmstead and
Stephen C. Newbold
Additional contact information
John A. Downing: University of Minnesota
Stephen Polasky: University of Minnesota
Sheila M. Olmstead: The University of Texas at Austin
Stephen C. Newbold: University of Wyoming
Nature Communications, 2021, vol. 12, issue 1, 1-6
Abstract:
Abstract Surface water is among Earth’s most important resources. Yet, benefit–cost studies often report that the costs of water quality protection exceed its benefits. One possible reason for this seeming paradox is that often only a narrow range of local water quality benefits are considered. In particular, the climate damages from water pollution have rarely been quantified. Recent advances in global water science allow the computation of the global methane emission from lakes caused by human nutrient enrichment (eutrophication). Here, we estimate the present value of the global social cost of eutrophication-driven methane emissions from lakes between 2015 and 2050 to be $7.5–$81 trillion (2015 $US), and in a case-study for one well-studied lake (Lake Erie) we find the global value of avoiding eutrophication exceeds local values of either beach use or sport fishing by 10-fold.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-22836-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22836-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-22836-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().