Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy
Ziheng Yao,
Xinzhong Chen,
Lukas Wehmeier,
Suheng Xu,
Yinming Shao,
Zimeng Zeng,
Fanwei Liu,
Alexander S. Mcleod,
Stephanie N. Gilbert Corder,
Makoto Tsuneto,
Wu Shi,
Zihang Wang,
Wenjun Zheng,
Hans A. Bechtel,
G. L. Carr,
Michael C. Martin,
Alex Zettl,
D. N. Basov,
Xi Chen,
Lukas M. Eng,
Susanne C. Kehr and
Mengkun Liu ()
Additional contact information
Ziheng Yao: Stony Brook University
Xinzhong Chen: Stony Brook University
Lukas Wehmeier: Technische Universität Dresden
Suheng Xu: Stony Brook University
Yinming Shao: Columbia University
Zimeng Zeng: Tsinghua University
Fanwei Liu: Tsinghua University
Alexander S. Mcleod: Columbia University
Stephanie N. Gilbert Corder: Lawrence Berkeley National Laboratory
Makoto Tsuneto: Stony Brook University
Wu Shi: Lawrence Berkeley National Laboratory
Zihang Wang: University of California
Wenjun Zheng: Stony Brook University
Hans A. Bechtel: Lawrence Berkeley National Laboratory
G. L. Carr: Brookhaven National Laboratory
Michael C. Martin: Lawrence Berkeley National Laboratory
Alex Zettl: Lawrence Berkeley National Laboratory
D. N. Basov: Columbia University
Xi Chen: Tsinghua University
Lukas M. Eng: Technische Universität Dresden
Susanne C. Kehr: Technische Universität Dresden
Mengkun Liu: Stony Brook University
Nature Communications, 2021, vol. 12, issue 1, 1-9
Abstract:
Abstract Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm−1 to 800 cm−1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-22844-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22844-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-22844-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().