A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells
F. Baiutti (),
F. Chiabrera,
M. Acosta,
D. Diercks,
D. Parfitt,
J. Santiso,
X. Wang,
A. Cavallaro,
A. Morata,
H. Wang,
A. Chroneos,
J. MacManus-Driscoll and
A. Tarancon ()
Additional contact information
F. Baiutti: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Sant Adrià del Besòs
F. Chiabrera: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Sant Adrià del Besòs
M. Acosta: University of Cambridge
D. Diercks: Colorado School of Mines
D. Parfitt: Coventry University
J. Santiso: Catalan Institute of Nanoscience and Nanotechnology, ICN2, CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra
X. Wang: Purdue University
A. Cavallaro: Imperial College London
A. Morata: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Sant Adrià del Besòs
H. Wang: Purdue University
A. Chroneos: Coventry University
J. MacManus-Driscoll: University of Cambridge
A. Tarancon: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Sant Adrià del Besòs
Nature Communications, 2021, vol. 12, issue 1, 1-11
Abstract:
Abstract The implementation of nano-engineered composite oxides opens up the way towards the development of a novel class of functional materials with enhanced electrochemical properties. Here we report on the realization of vertically aligned nanocomposites of lanthanum strontium manganite and doped ceria with straight applicability as functional layers in high-temperature energy conversion devices. By a detailed analysis using complementary state-of-the-art techniques, which include atom-probe tomography combined with oxygen isotopic exchange, we assess the local structural and electrochemical functionalities and we allow direct observation of local fast oxygen diffusion pathways. The resulting ordered mesostructure, which is characterized by a coherent, dense array of vertical interfaces, shows high electrochemically activity and suppressed dopant segregation. The latter is ascribed to spontaneous cationic intermixing enabling lattice stabilization, according to density functional theory calculations. This work highlights the relevance of local disorder and long-range arrangements for functional oxides nano-engineering and introduces an advanced method for the local analysis of mass transport phenomena.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-22916-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22916-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-22916-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().