Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams
T. Kurz (),
T. Heinemann,
M. F. Gilljohann,
Y. Y. Chang,
J. P. Couperus Cabadağ,
A. Debus,
O. Kononenko,
R. Pausch,
S. Schöbel,
R. W. Assmann,
M. Bussmann,
H. Ding,
J. Götzfried,
A. Köhler,
G. Raj,
S. Schindler,
K. Steiniger,
O. Zarini,
S. Corde,
A. Döpp,
B. Hidding,
S. Karsch (),
U. Schramm,
A. Martinez de la Ossa and
A. Irman ()
Additional contact information
T. Kurz: Helmholtz-Zentrum Dresden–Rossendorf
T. Heinemann: Deutsches Elektronen-Synchrotron DESY
M. F. Gilljohann: Ludwig–Maximilians–Universität München
Y. Y. Chang: Helmholtz-Zentrum Dresden–Rossendorf
J. P. Couperus Cabadağ: Helmholtz-Zentrum Dresden–Rossendorf
A. Debus: Helmholtz-Zentrum Dresden–Rossendorf
O. Kononenko: LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
R. Pausch: Helmholtz-Zentrum Dresden–Rossendorf
S. Schöbel: Helmholtz-Zentrum Dresden–Rossendorf
R. W. Assmann: Deutsches Elektronen-Synchrotron DESY
M. Bussmann: Helmholtz-Zentrum Dresden–Rossendorf
H. Ding: Ludwig–Maximilians–Universität München
J. Götzfried: Ludwig–Maximilians–Universität München
A. Köhler: Helmholtz-Zentrum Dresden–Rossendorf
G. Raj: LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
S. Schindler: Ludwig–Maximilians–Universität München
K. Steiniger: Helmholtz-Zentrum Dresden–Rossendorf
O. Zarini: Helmholtz-Zentrum Dresden–Rossendorf
S. Corde: LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
A. Döpp: Ludwig–Maximilians–Universität München
B. Hidding: The Cockcroft Institute
S. Karsch: Ludwig–Maximilians–Universität München
U. Schramm: Helmholtz-Zentrum Dresden–Rossendorf
A. Martinez de la Ossa: Deutsches Elektronen-Synchrotron DESY
A. Irman: Helmholtz-Zentrum Dresden–Rossendorf
Nature Communications, 2021, vol. 12, issue 1, 1-9
Abstract:
Abstract Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m−1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-23000-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23000-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-23000-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().