Reducing the impact of radioactivity on quantum circuits in a deep-underground facility
L. Cardani (),
F. Valenti,
N. Casali,
G. Catelani,
T. Charpentier,
M. Clemenza,
I. Colantoni,
A. Cruciani,
G. D’Imperio,
L. Gironi,
L. Grünhaupt,
D. Gusenkova,
F. Henriques,
M. Lagoin,
M. Martinez,
G. Pettinari,
C. Rusconi,
O. Sander,
C. Tomei,
A. V. Ustinov,
M. Weber,
W. Wernsdorfer,
M. Vignati,
S. Pirro and
I. M. Pop ()
Additional contact information
L. Cardani: INFN Sezione di Roma
F. Valenti: PHI, Karlsruhe Institute of Technology
N. Casali: INFN Sezione di Roma
G. Catelani: JARA Institute for Quantum Information, Forschungszentrum Jülich
T. Charpentier: PHI, Karlsruhe Institute of Technology
M. Clemenza: Università di Milano - Bicocca
I. Colantoni: INFN Sezione di Roma
A. Cruciani: INFN Sezione di Roma
G. D’Imperio: INFN Sezione di Roma
L. Gironi: Università di Milano - Bicocca
L. Grünhaupt: PHI, Karlsruhe Institute of Technology
D. Gusenkova: PHI, Karlsruhe Institute of Technology
F. Henriques: PHI, Karlsruhe Institute of Technology
M. Lagoin: PHI, Karlsruhe Institute of Technology
M. Martinez: Universidad de Zaragoza
G. Pettinari: Institute for Photonics and Nanotechnologies, National Research Council
C. Rusconi: INFN Laboratori Nazionali del Gran Sasso
O. Sander: IPE, Karlsruhe Institute of Technology
C. Tomei: INFN Sezione di Roma
A. V. Ustinov: PHI, Karlsruhe Institute of Technology
M. Weber: IPE, Karlsruhe Institute of Technology
W. Wernsdorfer: PHI, Karlsruhe Institute of Technology
M. Vignati: INFN Sezione di Roma
S. Pirro: INFN Laboratori Nazionali del Gran Sasso
I. M. Pop: PHI, Karlsruhe Institute of Technology
Nature Communications, 2021, vol. 12, issue 1, 1-6
Abstract:
Abstract As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor thirty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-23032-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23032-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-23032-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().