EconPapers    
Economics at your fingertips  
 

Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning

Haonan Lin, Hyeon Jeong Lee, Nathan Tague, Jean-Baptiste Lugagne, Cheng Zong, Fengyuan Deng, Jonghyeon Shin, Lei Tian, Wilson Wong, Mary J. Dunlop and Ji-Xin Cheng ()
Additional contact information
Haonan Lin: Boston University
Hyeon Jeong Lee: Boston University
Nathan Tague: Boston University
Jean-Baptiste Lugagne: Boston University
Cheng Zong: Boston University
Fengyuan Deng: Boston University
Jonghyeon Shin: Boston University
Lei Tian: Boston University
Wilson Wong: Boston University
Mary J. Dunlop: Boston University
Ji-Xin Cheng: Boston University

Nature Communications, 2021, vol. 12, issue 1, 1-12

Abstract: Abstract Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented insight into real-time chemical distributions. Specifically, SRS in the fingerprint region (400–1800 cm−1) can resolve multiple chemicals in a complex bio-environment. However, due to the intrinsic weak Raman cross-sections and the lack of ultrafast spectral acquisition schemes with high spectral fidelity, SRS in the fingerprint region is not viable for studying living cells or large-scale tissue samples. Here, we report a fingerprint spectroscopic SRS platform that acquires a distortion-free SRS spectrum at 10 cm−1 spectral resolution within 20 µs using a polygon scanner. Meanwhile, we significantly improve the signal-to-noise ratio by employing a spatial-spectral residual learning network, reaching a level comparable to that with 100 times integration. Collectively, our system enables high-speed vibrational spectroscopic imaging of multiple biomolecules in samples ranging from a single live microbe to a tissue slice.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-23202-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23202-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-23202-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23202-z