Regioselective activation of benzocyclobutenones and dienamides lead to anti-Bredt bridged-ring systems by a [4+4] cycloaddition
Jianyu Zhang,
Xi Wang and
Tao Xu ()
Additional contact information
Jianyu Zhang: Ocean University of China
Xi Wang: Ocean University of China
Tao Xu: Ocean University of China
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract To the best of our knowledge, bridgehead carbon benzofused-bridged ring systems have previously not been accessible to the synthetic community. Here, we describe a formal type-II [4 + 4] cycloaddition approach that provides fully sp2-carbon embedded anti-Bredt bicyclo[5.3.1] skeletons through the Rh-catalyzed C1–C8 activation of benzocyclobutenones (BCBs) and their coupling with pedant dienamides. Variously substituted dienamides have been coupled with BCBs to provide a range of complex bicyclo[5.3.1] scaffolds (>20 examples, up to 89% yield). The bridged rings were further converted to polyfused hydroquinoline-containing tetracycles via a serendipitously discovered transannular 1,5-hydride shift/Prins-like cyclization/Schmidt rearrangement cascade.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-23344-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23344-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-23344-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().