EconPapers    
Economics at your fingertips  
 

Origin of the quasi-quantized Hall effect in ZrTe5

S. Galeski (), T. Ehmcke, R. Wawrzyńczak, P. M. Lozano, K. Cho, A. Sharma, S. Das, F. Küster, P. Sessi, M. Brando, R. Küchler, A. Markou, M. König, P. Swekis, C. Felser, Y. Sassa, Q. Li, G. Gu, M. V. Zimmermann, O. Ivashko, D. I. Gorbunov, S. Zherlitsyn, T. Förster, S. S. P. Parkin, J. Wosnitza, T. Meng and J. Gooth ()
Additional contact information
S. Galeski: Max Planck Institute for Chemical Physics of Solids
T. Ehmcke: Technische Universität Dresden
R. Wawrzyńczak: Max Planck Institute for Chemical Physics of Solids
P. M. Lozano: Brookhaven National Laboratory
K. Cho: Max Planck Institute of Microstructure Physics
A. Sharma: Max Planck Institute of Microstructure Physics
S. Das: Max Planck Institute of Microstructure Physics
F. Küster: Max Planck Institute of Microstructure Physics
P. Sessi: Max Planck Institute of Microstructure Physics
M. Brando: Max Planck Institute for Chemical Physics of Solids
R. Küchler: Max Planck Institute for Chemical Physics of Solids
A. Markou: Max Planck Institute for Chemical Physics of Solids
M. König: Max Planck Institute for Chemical Physics of Solids
P. Swekis: Max Planck Institute for Chemical Physics of Solids
C. Felser: Max Planck Institute for Chemical Physics of Solids
Y. Sassa: Chalmers University of Technology
Q. Li: Brookhaven National Laboratory
G. Gu: Brookhaven National Laboratory
M. V. Zimmermann: Deutsches Elektronen-Synchrotron DESY
O. Ivashko: Deutsches Elektronen-Synchrotron DESY
D. I. Gorbunov: Helmholtz-Zentrum Dresden-Rossendorf
S. Zherlitsyn: Helmholtz-Zentrum Dresden-Rossendorf
T. Förster: Helmholtz-Zentrum Dresden-Rossendorf
S. S. P. Parkin: Max Planck Institute of Microstructure Physics
J. Wosnitza: Helmholtz-Zentrum Dresden-Rossendorf
T. Meng: Technische Universität Dresden
J. Gooth: Max Planck Institute for Chemical Physics of Solids

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-23435-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23435-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-23435-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23435-y