EconPapers    
Economics at your fingertips  
 

Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics

A. Hooijer () and R. Vernimmen
Additional contact information
A. Hooijer: Deltares, Inland Water Systems Unit
R. Vernimmen: Data for Sustainability

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract Coastal flood risk assessments require accurate land elevation data. Those to date existed only for limited parts of the world, which has resulted in high uncertainty in projections of land area at risk of sea-level rise (SLR). Here we have applied the first global elevation model derived from satellite LiDAR data. We find that of the worldwide land area less than 2 m above mean sea level, that is most vulnerable to SLR, 649,000 km2 or 62% is in the tropics. Even assuming a low-end relative SLR of 1 m by 2100 and a stable lowland population number and distribution, the 2020 population of 267 million on such land would increase to at least 410 million of which 72% in the tropics and 59% in tropical Asia alone. We conclude that the burden of current coastal flood risk and future SLR falls disproportionally on tropical regions, especially in Asia.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-23810-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23810-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-23810-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23810-9