Exploring the link between molecular cloud ices and chondritic organic matter in laboratory
G. Danger (),
V. Vinogradoff (),
M. Matzka,
J-C. Viennet,
L. Remusat,
S. Bernard,
A. Ruf,
L. Sergeant d’Hendecourt and
P. Schmitt-Kopplin
Additional contact information
G. Danger: Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS
V. Vinogradoff: Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS
M. Matzka: Analytical BioGeoChemistry
J-C. Viennet: Sorbonne Université, UMR CNRS 7590, Institut de minéralogie, de physique des matériaux et de cosmochimie
L. Remusat: Sorbonne Université, UMR CNRS 7590, Institut de minéralogie, de physique des matériaux et de cosmochimie
S. Bernard: Sorbonne Université, UMR CNRS 7590, Institut de minéralogie, de physique des matériaux et de cosmochimie
A. Ruf: Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS
L. Sergeant d’Hendecourt: Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS
P. Schmitt-Kopplin: Analytical BioGeoChemistry
Nature Communications, 2021, vol. 12, issue 1, 1-9
Abstract:
Abstract Carbonaceous meteorites are fragments of asteroids rich in organic material. In the forming solar nebula, parent bodies may have accreted organic materials resulting from the evolution of icy grains observed in dense molecular clouds. The major issues of this scenario are the secondary processes having occurred on asteroids, which may have modified the accreted matter. Here, we explore the evolution of organic analogs of protostellar/protoplanetary disk material once accreted and submitted to aqueous alteration at 150 °C. The evolution of molecular compounds during up to 100 days is monitored by high resolution mass spectrometry. We report significant evolution of the molecular families, with the decreases of H/C and N/C ratios. We find that the post-aqueous products share compositional similarities with the soluble organic matter of the Murchison meteorite. These results give a comprehensive scenario of the possible link between carbonaceous meteorites and ices of dense molecular clouds.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-23895-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23895-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-23895-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().