EconPapers    
Economics at your fingertips  
 

A dynamic basal complex modulates mammalian sperm movement

Sushil Khanal, Miguel Ricardo Leung, Abigail Royfman, Emily L. Fishman, Barbara Saltzman, Hermes Bloomfield-Gadêlha, Tzviya Zeev-Ben-Mordehai () and Tomer Avidor-Reiss ()
Additional contact information
Sushil Khanal: University of Toledo
Miguel Ricardo Leung: The University of Oxford
Abigail Royfman: University of Toledo
Emily L. Fishman: University of Toledo
Barbara Saltzman: University of Toledo
Hermes Bloomfield-Gadêlha: University of Bristol
Tzviya Zeev-Ben-Mordehai: The University of Oxford
Tomer Avidor-Reiss: University of Toledo

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail – the centriole – but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC’s right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-24011-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24011-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-24011-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24011-0