Frustrated flexibility in metal-organic frameworks
Roman Pallach,
Julian Keupp,
Kai Terlinden,
Louis Frentzel-Beyme,
Marvin Kloß,
Andrea Machalica,
Julia Kotschy,
Suresh K. Vasa,
Philip A. Chater,
Christian Sternemann,
Michael T. Wharmby,
Rasmus Linser,
Rochus Schmid and
Sebastian Henke ()
Additional contact information
Roman Pallach: Technische Universität Dortmund
Julian Keupp: Ruhr-Universität Bochum
Kai Terlinden: Technische Universität Dortmund
Louis Frentzel-Beyme: Technische Universität Dortmund
Marvin Kloß: Technische Universität Dortmund
Andrea Machalica: Technische Universität Dortmund
Julia Kotschy: Technische Universität Dortmund
Suresh K. Vasa: Technische Universität Dortmund
Philip A. Chater: Diamond Light Source, Harwell Campus, Didcot
Christian Sternemann: Technische Universität Dortmund
Michael T. Wharmby: Deutsches Elektronen-Synchrotron (DESY)
Rasmus Linser: Technische Universität Dortmund
Rochus Schmid: Ruhr-Universität Bochum
Sebastian Henke: Technische Universität Dortmund
Nature Communications, 2021, vol. 12, issue 1, 1-12
Abstract:
Abstract Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-24188-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24188-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-24188-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().