Machine learning based energy-free structure predictions of molecules, transition states, and solids
Dominik Lemm,
Guido Falk von Rudorff and
O. Anatole von Lilienfeld ()
Additional contact information
Dominik Lemm: University of Vienna
Guido Falk von Rudorff: University of Vienna
O. Anatole von Lilienfeld: University of Vienna
Nature Communications, 2021, vol. 12, issue 1, 1-10
Abstract:
Abstract The computational prediction of atomistic structure is a long-standing problem in physics, chemistry, materials, and biology. Conventionally, force-fields or ab initio methods determine structure through energy minimization, which is either approximate or computationally demanding. This accuracy/cost trade-off prohibits the generation of synthetic big data sets accounting for chemical space with atomistic detail. Exploiting implicit correlations among relaxed structures in training data sets, our machine learning model Graph-To-Structure (G2S) generalizes across compound space in order to infer interatomic distances for out-of-sample compounds, effectively enabling the direct reconstruction of coordinates, and thereby bypassing the conventional energy optimization task. The numerical evidence collected includes 3D coordinate predictions for organic molecules, transition states, and crystalline solids. G2S improves systematically with training set size, reaching mean absolute interatomic distance prediction errors of less than 0.2 Å for less than eight thousand training structures — on par or better than conventional structure generators. Applicability tests of G2S include successful predictions for systems which typically require manual intervention, improved initial guesses for subsequent conventional ab initio based relaxation, and input generation for subsequent use of structure based quantum machine learning models.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-24525-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24525-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-24525-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().