Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media
Mariana C. O. Monteiro,
Matthew F. Philips,
Klaas Jan P. Schouten () and
Marc T. M. Koper ()
Additional contact information
Mariana C. O. Monteiro: Leiden University
Matthew F. Philips: Leiden University
Klaas Jan P. Schouten: Avantium
Marc T. M. Koper: Leiden University
Nature Communications, 2021, vol. 12, issue 1, 1-7
Abstract:
Abstract The electrochemical reduction of CO2 to CO is a promising technology for replacing production processes employing fossil fuels. Still, low energy efficiencies hinder the production of CO at commercial scale. CO2 electrolysis has mainly been performed in neutral or alkaline media, but recent fundamental work shows that high selectivities for CO can also be achieved in acidic media. Therefore, we investigate the feasibility of CO2 electrolysis at pH 2–4 at indrustrially relevant conditions, using 10 cm2 gold gas diffusion electrodes. Operating at current densities up to 200 mA cm−2, we obtain CO faradaic efficiencies between 80–90% in sulfate electrolyte, with a 30% improvement of the overall process energy efficiency, in comparison with neutral media. Additionally, we find that weakly hydrated cations are crucial for accomplishing high reaction rates and enabling CO2 electrolysis in acidic media. This study represents a step towards the application of acidic electrolyzers for CO2 electroreduction.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-24936-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24936-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-24936-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().